
XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

XDP: a new fast and
programmable network layer

XDP - eXpress Data Path

Jesper Dangaard Brouer

Principal Engineer, Red Hat Inc.

Kernel Recipes

Paris, France, Sep 2018

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Learn that:

● Linux got a new fast and programmable network layer
○ And touch upon the basic building blocks

● How this XDP technology got motivated upstream
● Why eBPF is such a perfect match for XDP
● Demystify: Why this XDP technology is so fast!
● How XDP achieves "hidden" RX bulking
● Why XDP-redirect is a novel approach

What will you learn?
What will you actually get out of listening to this talk?

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

XDP is about providing eBPF programmable superpowers to end-users

● But in this talk you will not learn how to code eBPF

Motivated and dedicated to: Making eBPF programming more easily consumable

● But NOT in this talk…
● … go watch many of my other talks! :-)

○ Like the tutorial: XDP for the Rest of Us

Anti slide: What you will NOT learn
We cannot cover everything today...

https://www.netdevconf.org/2.1/session.html?gospodarek

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 20184

XDP basically: New layer in the kernel network stack

● Before allocating the SKB
○ Driver level hook at DMA level

● Means: Competing at the same “layer” as DPDK / netmap
● Super fast, due to

○ Take action/decision earlier (e.g. skip some network layers)
○ No-memory allocations

● Not kernel bypass, data-plane is kept inside kernel
○ via BPF: makes early network stack run-time programmable
○ Cooperates with kernel

Single slide intro: What is XDP?
Compressed slide about XDP … cover the details later

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Next slides
What! - New layer in kernel networking?!
How did you motivate this upstream!?!

5

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Kernel bypass solutions: Like DPDK, netmap, PF_RING

● Show they are 10x faster than Linux kernel netstack
● This is true: FOR THEIR SPECIFIC USE-CASES

This lead to WRONG conclusions and quotes:

● Wrong: "Kernel is inherently too slow to handle networking"

Got motivated by showing this is WRONG

● Acknowledge competition, XDP was late to the game (2016 initial idea)

○ Netmap 2011 (SIGCOMM), DPDK 2013 (goes open-source?), PF_RING 2010 (earliest ref found)

Motivation through competition
Competition was helpful to force us to find an upstream kernel alternative

http://info.iet.unipi.it/~luigi/netmap/

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

It is all about the use-case

● Kernel bypass benchmarks show L2/L3 use-cases
● Linux netstack assumes socket delivery use-case

Linux network stack was build with socket-delivery use-case in focus

● Naming of container for packet data structure says is all:
○ SKB → sk_buff → (originates from) socket buffer
○ Thus, netstack takes this cost upfront (at driver level alloc SKB)

Unfair comparison
Comparing apples and bananas

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

XDP basically change the picture: Operate at same level

● Introduce layer before allocating the SKB
● Hook at driver level (running eBPF)

XDP goals

● Close the performance gap to kernel-bypass solutions
○ Not a goal to be faster

● Provide in-kernel alternative, that is more flexible
○ Don’t steal the entire NIC

● Work in concert with existing network stack

XDP design goals
Operate at same L2/L3 level, allows for apple to apple comparison

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Next slides
Show me some benchmarks!

9

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Comparing dropping packet:
DPDK vs. XDP vs Linux

● XDP follow DPDK line,
offset is due to driver indirect calls,
calculated to 16 nanosec offset

● Linux scales perfectly,
conntrack overhead is significant

● HW/driver does PCIe compression to
avoid PCIe limitations

Benchmark: Drop packet
Driver: mlx5,
HW: 100Gbit/s ConnectX-5 Ex.
CPU: E5-1650v4

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Comparing L2 forward packets
● XDP-same-NIC uses XDP_TX, which

bounce packet inside NIC driver
● XDP-different-NIC use

XDP_REDIRECT, which is more
advanced (further optimization possible)

● Shows XDP can be faster than
DPDK, in certain cases/modes

Benchmark: L2 forwarding
Driver: mlx5,
HW: 100Gbit/s ConnectX-5 Ex.
CPU: E5-1650v4

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Next slides
Sounds cool!
Tell me more about: Basic design and building blocks

12

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

BPF program return an action or verdict

● XDP_DROP, XDP_PASS, XDP_TX, XDP_ABORTED, XDP_REDIRECT

How to cooperate with network stack

● Pop/push or modify headers: Change RX-handler kernel use
○ e.g. handle protocol unknown to running kernel

● Can propagate 32Bytes meta-data from XDP stage to network stack
○ TC (clsbpf) hook can use meta-data, e.g. set SKB mark

XDP actions and cooperation
What are the basic building blocks I can use?

13

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Data-plane: inside kernel, split into:

● Kernel-core: Fabric in charge of moving packets quickly
● In-kernel BPF program:

○ Policy logic decide action
○ Read/write access to packet

Control-plane: Userspace

● Userspace load BPF program
● Can control program via changing BPF maps
● Everything goes through bpf system call

Design: XDP: data-plane and control-plane
Overall design

14

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

BPF is sandboxed code running inside kernel (XDP only loaded by root)

● A given kernel BPF hook just define:
○ possible actions and limit helpers (that can lookup or change kernel state)

Users get programmable policies (within these limits)

● Userspace "control-plane" API tied to userspace app (not kernel API)
○ likely via modifying a BPF-map

● No longer need a kernel ABI
○ like sysctl/procfs/ioctls etc.

Why kernel developers should love BPF
How BPF avoids creating a new kernel ABI for every new user-invented policy decision

15

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Next slides
Why XDP_REDIRECT is so interesting?!

16

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

XDP got action code XDP_REDIRECT (that drivers must implement)

● In basic form: Redirecting RAW frames out another net_device/ifindex
● Egress driver: implement ndo_xdp_xmit (and ndo_xdp_flush)

Performance low without using a map for redirect (single CPU core numbers, ixgbe):

● Using helper: bpf_redirect = 7.5 Mpps
● Using helper: bpf_redirect_map = 13.0 Mpps

What is going on?

● Using redirect maps is a HUGE performance boost, why!?

XDP action XDP_REDIRECT
First lets cover the basics, net_device redirect (... later, more flexibility in maps)
Avail since kernel v4.14, but drivers slower to adapt

17

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 201818

Basic design: Simplify changes needed in drivers

● Name “redirect” is more generic, than “forwarding”

First trick: Hide RX bulking from driver code via MAP

● Driver still processes packets one at a time - calling xdp_do_redirect

● End of driver NAPI poll routine “flush” (max 64 packets) - call xdp_do_flush_map

● Thus, bulking via e.g. delaying expensive NIC tailptr/doorbell

Second trick: invent new types of redirects easy

● Without changing any driver code!
● Hopefully last XDP action code(?)

Novel: redirect using BPF maps
Why is it so brilliant to use BPF maps for redirecting?

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Gist: Driver XDP RX-processing (NAPI) loop
Demonstrate NAPI-poll call BPF prog per packet and end with MAP-flush

Basic code needed in Driver for supporting XDP:

 1 while (desc_in_rx_ring && budget_left--) {
 2 action = bpf_prog_run_xdp(xdp_prog, xdp_buff);
 3 /* helper bpf_redirect_map have set map (and index) via this_cpu_ptr */
 4 switch (action) {
 5 case XDP_PASS: break;
 6 case XDP_TX: res = driver_local_xmit_xdp_ring(adapter, xdp_buff); break;
 7 case XDP_REDIRECT: res = xdp_do_redirect(netdev, xdp_buff, xdp_prog); break;
 8 default: bpf_warn_invalid_xdp_action(action); /* fallthrough */
 9 case XDP_ABORTED: trace_xdp_exception(netdev, xdp_prog, action); /* fallthrough */
 10 case XDP_DROP: res = DRV_XDP_CONSUMED; break;
 11 } /* left out acting on res */
 12 } /* End of NAPI-poll */
 13 xdp_do_flush_map(); /* Bulk chosen by map, can store xdf_frame for flushing */
 14 driver_local_XDP_TX_flush();

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 201820

The “devmap”: BPF_MAP_TYPE_DEVMAP

● Contains net_devices, userspace adds them via ifindex to map-index

The “cpumap”: BPF_MAP_TYPE_CPUMAP

● Allow redirecting RAW xdp frames to remote CPU
○ SKB is created on remote CPU, and normal network stack invoked

● The map-index is the CPU number (the value is queue size)

AF_XDP - “xskmap”: BPF_MAP_TYPE_XSKMAP

● Allow redirecting RAW xdp frames into userspace
○ via new Address Family socket type: AF_XDP
○ Very close to ‘netmap’ design, keeping drivers in kernel-space
○ Ask Björn Töpel who implemented it… in audience

Redirect map types
What kind of redirects are people inventing?!

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Next slides
Spectre V2 killed XDP performance

21

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 201822

Hey, you killed my XDP performance! (Retpoline tricks for indirect calls)

● Still processing 6 Mpps per CPU core
● But could do approx 13 Mpps before!

Initial through it was net_device->ndo_xdp_xmit call

● Implemented redirect bulking, but only helped a little

Real pitfall: DMA API use indirect function call pointers

● Christoph Hellwig PoC patch show perf return to approx 10 Mpps

Thus, solutions in the pipeline...

Performance issue: Spectre (variant 2)
CONFIG_RETPOLINE and newer GCC compiler
 - for stopping Spectre (variant 2) CPU side-channel attacks

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Next slides
Questions asked by NDIV (HAproxy) in:

“Challenges migrating from NDIV to XDP”
NetDev Conf 0x12 (slides and video)

23

https://www.netdevconf.org/0x12/session.html?challenges-migrating-from-ndiv-to-xdp
https://www.files.netdevconf.org/d/c9e2da07d150464485a6/files/?p=/Challenges%20migrating%20from%20NDIV%20to%20XDP.pdf&dl=1
https://www.youtube.com/watch?v=vpv-sO6U5h8&feature=youtu.be

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

NDIV callback rx_done() per packet batch, at end of RX loop

● XDP do have this, but part of BPF map abstraction
● For XDP, correspond to: xdp_do_flush_map

In theory, NDIV could be implemented with BPF as

● Move match/filter part into BPF prog, that return action XDP_REDIRECT
● New redirect BPF map type for NDIV

○ (Ugly) could do mem alloc for NDIV “out-packet(s)”
○ (Ugly) could invoke ndiv->handle_rx(xdp_frame)

● This map type, can receive event RX-done via xdp_do_flush_map

NDIV need callback rx_done()
NDIV have callback rx_done() per packet batch, at end of RX loop

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

There is no TX hook in XDP, why?

● For packets arriving from netstack
○ makes no-sense performance-wise (too late, SKB already alloc)

● BPF hook for TX is available
○ Use TC (clsbpf) egress BPF-prog hook (takes SKB like your handler)

(Disclaimer only idea:) Maybe do XDP bpf_prog invoke if ndo_xdp_xmit() fails

● Use-case: react to XDP-redirect TX overflow
○ E.g. allow new XDP action, like another redirect target (load-balance)

XDP hook at TX?
Could not find the XDP hook at TX
NDIV have ndiv->handle_tx(ndiv, skb)

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

End slide
… Questions?

plus.google.com/+JesperDangaardBrouer

linkedin.com/in/brouer

youtube.com/channel/UCSypIUCgtI42z63soRMONng

facebook.com/brouer

twitter.com/JesperBrouer

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 201827

XDP + BPF combined effort of many people
Thanks to all contributors

● Alexei Starovoitov
● Daniel Borkmann
● Brenden Blanco
● Tom Herbert
● John Fastabend
● Martin KaFai Lau
● Jakub Kicinski
● Jason Wang
● Andy Gospodarek
● Thomas Graf

● Michael Chan (bnxt_en)
● Saeed Mahameed (mlx5)
● Tariq Toukan (mlx4)
● Björn Töpel (i40e + AF_XDP)
● Magnus Karlsson (AF_XDP)
● Yuval Mintz (qede)
● Sunil Goutham (thunderx)
● Jason Wang (VM)
● Michael S. Tsirkin (ptr_ring)
● Edward Cree
● Toke Høiland-Jørgensen

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Next slides
Extra slides if time permits...

28

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Next slides
What is this CPUMAP redirect?

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 201830

Basic cpumap properties

● Enables redirection of XDP frames to remote CPUs
● Moved SKB allocation outside driver (could help simplify drivers)

Scalability and isolation mechanism

● Allows isolating/decouple driver XDP layer from network stack
○ Don't delay XDP by deep call into network stack

● Enables DDoS protection on end-hosts (that run services)
○ XDP fast-enough to avoid packet drops happen in HW NICs

Another use-case: Fix NIC-HW RSS/RX-hash broken/uneven CPU distribution

● Proto unknown to HW: e.g. VXLAN and double-tagged VLANs
● Suricata use this feature

XDP_REDIRECT + cpumap
What is cpumap redirect?

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 201831

Cpumap architecture: Every slot in array-map: dest-CPU

● MPSC (Multi Producer Single Consumer) model: per dest-CPU
○ Multiple RX-queue CPUs can enqueue to single dest-CPU

● Fast per CPU enqueue store (for now) 8 packets
○ Amortized enqueue cost to shared ptr_ring queue via bulk-enq

● Lockless dequeue, via pinning kthread CPU and disallow ptr_ring resize

Important properties from main shared queue ptr_ring (cyclic array based)

● Enqueue+dequeue don't share cache-line for synchronization
○ Synchronization happens based on elements
○ In queue almost full case, avoid cache-line bouncing
○ In queue almost empty case, reduce cache-line bouncing via bulk-enq

Cpumap redirect: CPU scaling
Tricky part getting cross CPU delivery fast-enough

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 201832

XDP_REDIRECT
enqueue into

cpumap

Kthread dequeue

Start normal
netstack

App can run on
another CPU via

socket queue

CPU scheduling via cpumap
Queuing and scheduling in cpumap

CPU#2
kthread

CPU#1
NAPI RX

CPU#3
Userspace

sched

Hint: Same CPU sched possible
● But adjust /proc/sys/kernel/sched_wakeup_granularity_ns

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 2018

Next slides
Recent changes to XDP core

33

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 201834

Long standing request: separate BPF programs per RX queue

● This is not likely to happen… because

Solution instead: provide info per RX queue (xdp_rxq_info)

● Info: ingress net_device (Exposed as: ctx->ingress_ifindex)
● Info: ingress RX-queue number (Exposed as: ctx->rx_queue_index)

Thus, NIC level XDP/bpf program can instead filter on rx_queue_index

Recent change: Information per RX-queue
Recent change in: kernel v4.16

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 201835

XDP_REDIRECT needs to queue XDP frames e.g. for bulking

● Queuing open-coded for both cpumap and tun-driver
● Generalize/standardize into struct xdp_frame
● Store info in top of XDP frame headroom (reserved)

○ Avoids allocating memory

Recent change: queuing via xdp_frame
Very recent changes: only accepted in net-next (to appear in v4.18)

XDP: new fast and programmable network layer - Kernel Recipes, Paris, Sep 201836

API for how redirected frames are freed or "returned"

● XDP frames are returned to originating RX driver
● Furthermore: this happens per RX-queue level (extended xdp_rxq_info)

This allows driver to implement different memory models per RX-queue

● E.g. needed for AF_XDP zero-copy mode

Recent change: Memory return API
Very recent changes: only accepted in net-next (to appear in v4.18)

